FML Model Number C78SERIES, < 50 KRad/Si - TID, Commercial Space 5x7 mm Crystal Oscillator | 3.3V | CMOS | 5x7mm Ceramic, Straight Leads | SmallSat-CubeSat Straight Leads Ceramic SMD Package **Mechanical SPECIFICATIONS** Hi-Rel Design and Manufacture Proven High Shock Crystal Support ECCN - EAR 99 **Features** Customer Support & Service High-Shock & Vibration Configuration Small Hi-Rel Package Mission Life Duration Choice Designed for > 20,000 Hours Life at +125°C $0.276 \pm .006$ **Electrical** R 0.20 Mission Success | Life Options 6 Months to 5 Years (7.0 ± 0.2) **SPECIFICATIONS** (R.008) **Mission Life / Screening Code Rise/Fall Frequency Stability Vs. Temperature** Frequency Supply Symmetry Aging в Time -55°C to -55°C to -40°C to -40°C to С Range Current min / max per year Α standard Frequency +85°C 6 Months 1 Year 3 Years @ 3.3V ±10% (tr/tf) max max 1/ +125°C +125°C +105°C marking to 1 year to 5 years to 2 years Part Number (MHz) $0.197 \pm .006$ (mA)(nsec) (%) (ppm) (ppm) (ppm) (ppm) (ppm) shown D/C FMI (5.00 ± 0.15) V CODE CODE CODE CODE CODE CODE CODE stability vs. Α В С D \oslash S/N temperature 01 02 03 0.5 to 0.9 1 3 48/52 ±100 ±75 ±60 ±50 ±10 code 05 04 06 1.2 3 48/52 ±100 ±75 ±60 ±50 1 to 7.9 ±10 3 3 07 **08** 09 8 to 15.9 45/55 ±10 ±100 ±75 ±60 ±50 $0.200 \pm .008$ 12 6 3 45/55 ±100 ±75 ±60 ±50 11 13 16 to 49.9 ±10 (5.08 ± 0.2) 2 14 15 16 50 to 79.9 8 40/60 ±10 ±100 ±75 ±60 ± 50 17 18 19 80 to 94.9 10 2 40/60 ±10 ±100 ±75 ± 60 ± 50 <u>0.100</u> max 22 95 to 130 25 2 40/60 +100+75+60±50 21 23 +10(2.54)See reverse side for screening details CMOS Output, 15 pF Load 1/ Frequency Aging Limit 0.028 Output Voltage - Logic "0" is Vcc x 0.1 Vdc $0.200 \pm .005$ (0.72)Max change over 30 days ±1.5 ppm 0.008 Output Voltage - Logic "1" is Vcc is 0.9 Vdc 0.040 Projected max change for 1 year after 30 days ±10 ppm (5.80 ± 0.13) (0.20)Start-up Time: 10 msec max (1.02)Leads are integra to the ceramic $0.018 \pm .003$ Standard header. They are **Pin Number** Function Please Contact Us for Specification Options $(0.46 \pm .003)$ PIN not added on to that are Outside of or beyond those Ourput Enable (Tri-state)* CONFIGURATION the package in a Shown in the Table Above 2 Ground (case) * Enable, Logic 1 | Disable, Logic 0 post manufactur 3 Output ing process Terminate any unused leads (they are not terminated internally) 4 Supply V (Vcc) **How To** $0.200 \pm .005$ C78 1M000000 ORDER 04 D $0.008 \pm .001$ (5.080 ± 0.13)

Ph. 714 373 8100 Fx. 714 373 8700 Sales@FrequencyManagment.com

FrequencyManagement.com

Other Thru-hole Leaded 5x7 mm Ceramic SMD for Space, **Please Inquire!**

lission Life Screening- A, B & C OPTIONS			CODE			
Screening	Method Options:	Α		В	С	
Non-Destruct Bond Pull	MIL-STD-883, Method 2023	•		•	•	
Internal Visual	MIL-STD-883, Method 2017				•	
Stabilization (Vacuum) Bake	MIL-STD-883, Method 1008, Condition C, 150°C, 24 hours min	٠		•	•	
Temperature Cycling	MIL-STD-883, Method 1010, Condition B, 10 Cycles	•		•	•	
Constant Acceleration	MIL-STD-883, Method 2001, Condition A (Y1 only, 5000 g's)				•	
PIND Test	MIL-STD-883, Method 2020, Condition B, 5 passes max				•	
Seal: Fine Leak	MIL-STD-883, Method 1014, Condition A1				•	
	MIL-STD-202, Method 112, Condition C, 111A			•		
Seal: Gross Leak	MIL-STD-202, Method 112, Condition D	•		•	•	
Electrical Test	Functional Test Only at +23°C				•	
Marking & Serialization	MIL-STD-1285	•		•	•	
Electrical Test	Nominal Vcc & Extremes and Nominal Temp and Extremes				•	
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min			•	•	
Burn-in (no-load)	+125°C, Nominal Supply Voltage and Burn-in load, 48 hours min					
Interim Electrical	Functional Test Only				•	
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min				•	
b) Frequency stability is tested	icy, output waveform, are tested at +23°C ±2°C over the specified temperature range; at both minimum of 5 temperature increments is by lot # and then serial #	•		•	•	
Radiography	MIL-STD-883, Method 2012				•	
Frequency Aging	MIL-PRF-55310, +70°C Condition				•	
Frequency/Temperature Stability	MIL-PRF-55310, Over temperature extremes, 20 points equally spaced				•	
External Visual & Mechanical	MIL-STD-883, Method 2009	•		•	•	

note: other options, screening levels and custom test plans available.

Helpful & Relevant Reference Specifications

MIL-STD-790 Certified	MIL-PRF-55310	Oscillators, Crystal Controlled, General Specification For
QPL per MIL-PRF-55310	MIL-PRF-38534	Hybrid Microcircuits, General Specification For
ISO 9001:2015	MIL-STD-202 MIL-STD-883	Test Method Standard, Electronic and Electrical Components Test Methods and Procedures for Microelectronics
Pb-free RoHS Certified	MIL-STD-1686	Electrostatic Discharge Control Program for Protection of
		Electrical and Electronic Parts, Assemblies and Equipment

FREQUENCY MANAGEMENT | International 15302 Bolsa Chica Street

Designed Specifically for Lower-cost Space Missions SmallSat | CubeSat

Environmental COMPLIANCE							
Environmental	Specification	Method	Condition				
Vibration – Sine	MIL-STD-202	Method 204	Condition D	20g, 10 to 2 KHz			
Vibration – Random	MIL-STD-202	Method 214	Condition 1	30g rms, 10 to 2 KHz Random			
Shock	MIL-STD-202	Method 213	Condition I	100g, 6 ms, F:1500, 0.5 ms			
Seal Test	MIL-STD-883	Method 1014	Condition A1	Fine Leak			
Seal Test	MIL-STD-883	Method 1014	Condition C1	Gross Leak			
Temperature Cycling	MIL-STD-883	Method 1010	Condition B	10 Cycles Minimum			
Constant Acceleration	MIL-STD-883	Method 2001	Condition A	5000g, Y1 Axis			
Thermal Shock	MIL-STD-202	Method 107	Condition B				
continued							
Environmentel	Cassifie		had C	andition.			

Environmental **Specification** Method Condition Ambient Pressure MIL-STD-202 Method 105 Condition C MIL-STD-202 Condition C Resistance to Soldering Heat Method 210 Moisture Resistance MIL-STD-202 Method 106 with 7B Sub-cycle MIL-STD-883 Method 1009 Condition A (24 hrs) Salt Atmosphere (corrosion) **Terminal Strength** MIL-STD-202 Method 211 Test Condition D Solderability MIL-STD-883 Method 2003 Resistance to Solvents MIL-STD-202 Method 215

Materials

- 1. Package Materials: Ceramic, Alumina 90% min
- 2. Pad Plating Material: Gold Plate 0.3 µm (12 µ inch) over 2 µm (80 µ inch) min. Nickel

Products for Space Applications

Contact us for assistance with your higher level specifications. We will provide you with the technical support and the required documentation.

Issue 11_12192023

Ph. 714 373 8100 Fx. 714 373 8700 Sales@FrequencyManagment.com

FrequencyManagement.com

